27. Mai 2021

Quanten-Hall-Effekt und die dritte Dimension

Der quasi-quantisierte Hall-Effekt ist ein dreidimensionaler Verwandter des Quanten-Hall-Effekts in zwei dimensionalen Systemen.

Der Quanten-Hall-Effekt spielt traditionell nur in zweidimensionalen Elektronensystemen eine Rolle. Kürzlich jedoch wurde eine dreidimensionale Version des Quanten-Hall-Effekts im Dirac-Halbmetall ZrTe5 beschrieben. Es wurde vorgeschlagen, dass diese Version aus einer magnetfeldinduzierten Fermi-Oberflächeninstabilität resultiert, die das ursprünglich drei-dimensionale Elektronensystem in einen Stapel von zwei-dimensionalen Elektronensystemen umwandelt. Jetzt haben Wissenschaftler am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden, an der Technischen Universität Dresden, am Brookhaven National Laboratory in New York, am Helmholtz-Zentrum Dresden-Rossendorf, dem Max-Planck-Institut für Mikrostrukturphysik in Halle und am Würzburg-Dresden Cluster of Excellence ct.qmat zeigen können, dass das Elektronensystem von ZrTe5 entgegen der ursprünglichen Erklärung auch im Magnetfeld drei-dimensional bleibt und, dass die quasi-Quantisierung des Hall-Effekts trotzdem direkt mit Quanten-Hall-Physik verknüpft ist.


Universell auch für konventionelle Metalle

Die Erkenntnisse aus der Studie über Quanten-Hall-Physik in der dritten Dimension lassen sich universell auf konventionale Metalle übertragen und versprechen eine einheitliche Erklärung der in der Vergangenheit oft rätselhaften Plateaus, die bei Hall-Messungen in vielen drei-dimensionalen Materialien beobachtet worden sind. Darüber hinaus kann das Konzept direkt angewendet werden, um den zwei-dimensionalen Quanten-Anomalen-Hall-Effekt auf generische drei-dimensionale Magnete zu verallgemeinern. Die Ergebnisse wurden in Nature Communications publiziert.
-> Zur News des Max-Planck-Instituts CPfS.


Grafik ©Max-Planck-Instituts CPfS: Spezifischer Hall-Widerstand als Funktion des angelegten Magnetfeldes bei einer Temperatur von 2 K in Einheiten des Planck’schen Wirkungsquantums h, der Elementarladung e und dem Fermiwellenvektor entlang des angelegten Magnetfeldes kF,z. Links oben zeigt eine Skizze der Probe. Rechts unten ist die drei-dimensionale Fermifläche der Elektronen in ZrTe5 dargestellt.

Das könnte Sie auch interessieren

21. Jul 2021

Flexibler Faserlaser für die flinke Materialbearbeitung

Laser-Experten aus Sachsen und Israel erproben derzeit gemeinsam am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden einen neuartigen Laser…

WEITERLESEN

18. Mrz 2021

Hightech-Abfall biologisch recyceln

Innovatives biotechnologisches Verfahren löst Gallium aus Industrieabwässern Gallium ist ein seltenes, aber in der High-Tech-Industrie viel verwendetes Metall. Dieser krasse…

WEITERLESEN

03. Jun 2020

Gamefication-Ansätze für den Fahrradverkehr

Stellen Sie sich vor, Sie sind mit dem Rad unterwegs. Wie gelangen Sie beispielsweise in Dresden am besten von A…

WEITERLESEN