11. September 2020

Kollektiver Quanteneffekt: Wenn Elektronen zusammenhalten

Erstmals werden nichtlineare Reaktionen von warmer dichter Materie beschrieben

Viele Himmelskörper wie Sterne oder Planeten enthalten Materie, die hohen Temperaturen und Druck ausgesetzt ist – Fachleute sprechen von warmer dichter Materie (WDM). Obwohl dieser Zustand auf der Erde nur im Erdkern vorkommt, schafft die Erforschung der WDM grundlegende Voraussetzungen für zahlreiche Zukunftsbereiche wie saubere Energie, härtere Materialien oder ein besseres Verständnis unseres Sonnensystems. Ein Team um den Physiker Dr. Tobias Dornheim vom Center for Advanced Systems Understanding (CASUS) zeigt nun in einer kürzlich in Physical Review Letters erschienenen Studie, dass sich warme dichte Materie deutlich anders verhält als angenommen. Das stellt ihre bisherige Beschreibung in Frage.

Um den exotischen Zustand warmer dichter Materie auf der Erde zu erforschern, erzeugen ihn Wissenschaftler*innen künstlich im Labor. Das gelingt ihnen unter anderem über Kompression durch leistungsstarke Laser. „Eine Probe, beispielsweise Kunststoff- oder Aluminiumfolie, wird dabei mit einem Laserstrahl beschossen, heizt sich an der Oberfläche sehr stark auf und wird durch die dadurch entstehende Schockwelle komprimiert. Durch den Einsatz eines Röntgenlasers können anschließend die resultierenden Spektren – das heißt, wie sich die Probe unter diesen Bedingungen verhält – auf Detektoren aufgenommen und in einem Bereich von 10-10 m (1 Ångström) deren Materialeigenschaften bestimmt werden“, erläutert Dr. Jan Vorberger vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Er fügt hinzu: „Wichtige Parameter wie die Temperatur oder die Dichte können jedoch nicht direkt gemessen werden. Hierfür sind zur Auswertung der WDM-Experimente theoretische Modelle von zentraler Bedeutung.“


System reagiert schwächer, je stärker es gestört wird

Solche Simulationsmodelle für die theoretische Beschreibung der WDM entwickelt Tobias Dornheim. Je stärker die Proben – so genannte Targets – durch Laserbestrahlung gestört werden, das heißt je stärker die Elektronen also in diesen Materialien angeregt werden, umso stärker reagieren sie. Bisher stützten sich die Berechnungen ausschließlich auf die Annahme einer „linearen Reaktion”. In ihrer neuen Veröffentlichung zeigen Dr. Tobias Dornheim von CASUS, Dr. Jan Vorberger vom HZDR und Prof. Dr. Michael Bonitz von der Christian-Albrechts-Universität zu Kiel nun, dass das System entgegen dieser Annahme deutlich schwächer reagiert, je stärker die Störung ist. Die Ergebnisse haben weit reichende Auswirkungen für die Interpretation von Experimenten mit WDM. „Mit dieser Studie haben wir die Grundlage für viele neue Entwicklungen zur theoretischen Beschreibung warmer dichter Materie gelegt“, schätzt Dornheim ein, „und die nichtlinearen Eigenschaften von warmer dichter Materie werden in den nächsten Jahren sicherlich weiter intensiv erforscht werden”.

Ihre Ergebnisse basieren auf umfangreichen Computer-Simulationen unter Anwendung der quantenstatistischen Pfad-Integral Monte-Carlo Methode (PIMC). Die Grundlagen der Methode legte Richard Feynman bereits in den 1950er Jahren. Dornheim hat in den letzten Jahren verbesserte Algorithmen geschrieben, um Berechnungen effizienter und schneller durchführen zu können. Dennoch, für ihre Studie rechneten Supercomputer auf mehr als 10.000 CPU-Kernen für mehr als 40 Tage. Zum Einsatz kamen dabei die High Performance Cluster Hypnos und Hemera des HZDR, der Cluster Taurus am Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) der Technischen Universität Dresden, Rechner beim Norddeutschen Verbund für Hoch- und Höchstleistungsrechnen (HLRN) sowie am Rechenzentrum der Universität Kiel.


WDM könnte wichtige Rolle für Energiewirtschaft spielen

Die Erforschung der WDM ist nicht nur von Bedeutung, um den Aufbau von Planeten wie Jupiter und Saturn oder unseres Sonnensystems und dessen Entwicklung zu verstehen, sondern findet auch Anwendung in den Materialwissenschaften, zum Beispiel bei der Entwicklung von super-harten Materialien. Die wichtigste Rolle könnte sie jedoch für die Energiewirtschaft spielen, indem sie Beiträge liefert für die Realisierung der Trägheitsfusion – eine fast unerschöpfliche und saubere Energiequelle mit Zukunftspotential.
-> Zur News des HZDR.


Bild ©Jan Vorberger/HZDR: Simulation einer Störung eines „Warm-dense-matter“-Systems durch einen Laserstrahl.

Das könnte Sie auch interessieren

07. Feb 2020

NEA wählt Claudia Felser (MPI CPfS)…

Zu Beginn des Jahres 2020 wurde Claudia Felser zum internationalen Mitglied der United States National Academy of Engineering (NEA) gewählt.…

WEITERLESEN

11. Sep 2019

Leichtbau: eine Mobilität der Zukunft

Die national übergreifende, offene Plattform zur Entwicklung von Hightech-Leichtbausystemlösungen für die Mobilität der Zukunft (FOREL) brachte auf dem diesjährigen

WEITERLESEN

19. Jul 2019

Lern-Apps für die Kunststoff-Lehrausbildung

Mit der Entwicklung und dem Einsatz von digitalen Lernmitteln wollen Wissenschaftler des Institutes für Leichtbau und Kunststofftechnik (ILK) der TU…

WEITERLESEN