10. Oktober 2019

Keramische Technologien für Power-to-X

CO2 kann in wertvolle Produkte umgewandelt werden. Die Technologie dazu nennen wir Power-to-X. Power-to-X ist derzeit allerdings noch ineffizient und teuer. Wissenschaftler des Fraunhofer-Instituts für Keramische Technologien und Systeme IKTS entwickelten nun keramikbasierte Reaktoren, mit denen aus CO2 und Wasserdampf Grundstoffe für die chemische Industrie wirtschaftlicher und klimaneutral gewonnen werden können.

Derzeit werden verschiedene Strategien zur Nutzung unvermeidbarer CO2-Emissionen verfolgt, aus denen beispielsweise chemische Grundstoffe (X) generiert werden sollen. Der dafür benötigte Strom (Power) soll aus erneuerbaren Energien bezogen werden. Denn nur dann kann CO2 zur Herstellung klimaneutraler Produkte beitragen.

Bisherige Power-to-X-Prozesse sind teuer
Solche Power-to-X-Prozesse sind bislang noch zu ineffizient, da sie aus vielen aufwändigen Einzelprozessen bestehen. Wissenschaftlern des Fraunhofer IKTS gelang es nun, eine Laboranlage aus keramikbasierten Reaktoren zu entwickeln, die CO2 in klimaneutrale Chemierohstoffe umwandelt. In den Reaktoren werden die Einzelprozesse intelligent gekoppelt. Stoff- und Energieflüsse werden intensiviert. Dadurch steigt die Effizienz gegenüber bisherigen Power-to-X-Prozessen.

Kopplung von Co-Elektrolyse mit Fischer-Tropsch-Synthese
Unvermeidbare CO2-Emissionen fallen beispielsweise in der Zement- und Kalkindustrie an. Um dieses CO2 nutzbar zu machen, sorgen beispielsweise keramische Filterkerzen für das Entstauben der Abgase. Nach einer solchen Grobreinigung kann das CO2 durch keramische Membranen herausgefiltert werden. Das gewonnene CO2 wird in einem neu entwickelten, keramischen Hochtemperatur-Elektrolyse-Reaktor bei über 750 °C in Kohlenmonoxid umgewandelt. Gleichzeitig – und das ist das Besondere – wird im selben Reaktor aus Wasserdampf Wasserstoff erzeugt – daher auch der Name Co-Elektrolyse. Kohlenmonoxid und Wasserstoff ergeben zusammen Synthesegas.

Die eingesetzten Reaktoren sind Elektrolysestacks (SOEC). Sie wurden am Fraunhofer IKTS entwickelt und auf ihre Stabilität von mehr als 4000 h erfolgreich getestet. Im Vergleich zur etablierten alkalischen oder PEM-Elektrolyse benötigt die Hochtemperatur-Elektrolyse wesentlich weniger elektrische Energie. Außerdem kann mit ihr das Synthesegas direkt hergestellt werden. In einem nachgeschalteten, ebenfalls am IKTS entwickelten Fischer-Tropsch-Reaktor erfolgt dann die Überführung des Synthesegases in chemische Grundstoffe – beispielsweise in langkettige Kohlenwasserstoffe.

Erfahren Sie mehr zum SOEC– und Fischer-Tropsch-Reaktor auf den Seiten des Fraunhofer IKTS.


Foto ©Fraunhofer IKTS: Wissenschaftler des Fraunhofer IKTS entwickelten keramische Technologie zur Auslegung hocheffizienter Power-to-X-Prozesse.

Das könnte Sie auch interessieren

01. Okt 2020

Macher 30-Preis für Frau Professor Brigitte…

Frau Prof. Dr. Brigitte Voit, Wissenschaftliche Direktorin des Leibniz-Instituts für Polymerforschung Dresden e. V. (

WEITERLESEN

01. Apr 2020

Textiler 3D-gestrickter Mund-Nasenschutz

Die Mitarbeitenden der TU Dresden befinden sich derzeit im Notbetrieb. So auch die Forschenden am Institut für Textilmaschinen und Textile…

WEITERLESEN

07. Okt 2019

Axion-Teilchen in einem Festkörperkristall gesichtet

Wissenschaftler des Max-Planck-Instituts für chemische Physik fester Stoffe (MPI CPfS) in Dresden, der Princeton Universität, der Universität Illinois und der…

WEITERLESEN