28. Oktober 2019

Ein übersehenes Puzzleteil des Sonnendynamos

Ein Forscherteam des HZDR, der Universität Leeds und des Leibniz AIP weist eine besondere Form magnetischer Instabilität nach.

Im rotierenden Plasma der Sonne wirkt ein bis dato unbeachteter Mechanismus: eine magnetische Instabilität, von der Wissenschaftler zuvor dachten, dass sie unter diesen Bedingungen physikalisch unmöglich wäre. Dieser Effekt könnte sogar eine wesentliche Rolle bei der Entstehung des Sonnenmagnetfelds spielen, wie Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR), der Universität Leeds und des Leibniz-Instituts für Astrophysik Potsdam (AIP)
in der Fachzeitschrift Physical Review Fluids berichten.

Wie bei einem gigantischen Dynamo entsteht das starke Magnetfeld der Sonne durch elektrische Ströme. Um diesen sich selbst verstärkenden Mechanismus des Sonnendynamos besser zu verstehen, müssen Forscher die Vorgänge und Strömungen im Sonnenplasma entschlüsseln. Unterschiedliche Drehgeschwindigkeiten verschiedener Regionen und komplexe Strömungen im Inneren der Sonne wirken zusammen, um das Magnetfeld zu erzeugen. Dabei können außergewöhnliche magnetische Effekte auftreten – wie die jetzt entdeckte magnetische Instabilität.

„Super-HMRI“ nennen die Forscher den neu erkannten Spezialfall der Magnetorotationsinstabilität (MRI). Es ist ein magnetischer Mechanismus, der rotierende, elektrisch leitende Flüssigkeiten und Gase in einem Magnetfeld instabil werden lässt. Das Besondere in diesem Fall: die Super-HMRI benötigt exakt die Bedingungen, wie sie im Plasma nahe des Sonnenäquators vorherrschen – dort, wo Astrophysiker die meisten Sonnenflecken und somit die größte magnetische Aktivität der Sonne beobachten. Allerdings war diese Instabilität in der Sonne bisher vollständig übersehen worden und wird in Modellen des Sonnendynamos noch nicht berücksichtigt.

Magnetische Geburtshelfer
Dabei ist bekannt, dass magnetische Instabilitäten entscheidend an vielen Vorgängen im Universum beteiligt sind. Beispielsweise entstehen Sterne und Planeten aus großen, sich drehenden Scheiben aus Staub und Gas. Ohne Magnetfelder ließe sich dieser Vorgang nicht erklären.

Magnetische Instabilitäten machen die Strömung in den Scheiben turbulent und ermöglichen so, dass sich die Masse zu einem zentralen Objekt zusammenballt. Wie ein Gummiband verbindet das Magnetfeld benachbarte Schichten, die mit unterschiedlicher Geschwindigkeit rotieren. Es beschleunigt die langsamen äußeren und bremst die schnellen inneren Materieteilchen. Die Wirkung der Fliehkraft reicht dort nicht mehr aus und die Materie stürzt ins Zentrum. In der Nähe des Sonnenäquators verhält es sich genau umgekehrt. Hier bewegen sich die inneren Schichten langsamer als die äußeren. Ein solches Strömungsprofil galt in Fachkreisen bislang als physikalisch extrem stabil.

Die Forscher vom HZDR, von der Universität Leeds und vom Leibniz AIP haben diesen Fall dennoch näher untersucht. Für ein kreisförmiges Magnetfeld hatten sie bereits errechnet, dass auch für außen schneller rotierende Flüssigkeiten und Gase eine magnetische Instabilität auftreten kann. Allerdings nur unter unrealistischen Bedingungen: Die Rotationsgeschwindigkeit müsste nach außen hin zu stark anwachsen.

Lesen Sie mehr zu diesem Phänomen in den Nachrichten des HZDR.


Foto ©NASA/SDO: In der Nähe des Sonnenäquators befinden sich die meisten Sonnenflecken und somit die größte magnetische Aktivität. Forscher haben für diese Region nun eine magnetische Instabilität nachgewiesen, die bislang als unmöglich galt.

Das könnte Sie auch interessieren

14. Nov 2019

Additiv gefertigte Kupferbauteile aus dem Fraunhofer…

Am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden ist gelang es, mittels Selektivem Elektronenstrahlschmelzen (Selective Electron Beam Melting…

WEITERLESEN

12. Jun 2018

Membranreaktoren liefern "grüne" Grundstoffe für die…

Geschlossene Kohlenstoffkreisläufe müssen in Zukunft einen wichtigen Beitrag leisten, Kohlendioxid-Emissionen drastisch zu reduzieren und einen sicheren und kostengünstigen Zugang zu…

WEITERLESEN

15. Mrz 2017

Die "Genius CAB" sahnt nochmals ab

Nach dem bauma Innovationspreis, dem VDBUM Förderpreis und dem Focus Open 2016 erhält das Konsortium "Concept CAB Cluster"  zum wiederholten…

WEITERLESEN